The effect of extremely narrow MLC leaf width on the plan quality of VMAT for prostate cancer
نویسندگان
چکیده
BACKGROUND To investigate the effect of multi-leaf collimators (MLCs) with leaf width of 1.25 mm on the plan quality of volumetric modulated arc therapy (VMAT) for prostate cancer. METHODS A total of 20 patients with prostate cancer were retrospectively selected. Using a high definition MLC (HD MLC), primary and boost VMAT plans with two full arcs were generated for each patient (original plan). After that, by shifting the isocenter position of the 2nd arc by 1.25 mm in the cranio-caudal direction, we simulated fluences made with MLCs with leaf width of 1.25 mm. After shifting, primary and boost plans were generated for each patient (shifted plan). A sum plan was generated by summation of the primary and boost plan for each patient. Dose-volumetric parameters were calculated and compared. RESULTS Both the homogeneity index (HI) and conformity index (CI) of the shifted plans were better than those of the original plans in primary plans (HI = 0.065 vs. 0.059 with p < 0.001 and CI = 1.056 vs. 1.044 with p = 0.006). Similarly, the shifted plans for the boost target volume showed better homogeneity and conformity than did the original plans (HI = 0.060 vs. 0.053 with p < 0.001 and CI = 1.015 vs. 1.009 with p < 0.001). The target mean dose of the original plans was closer to the prescription dose than that of the shifted plans in the case of sum plans (81.45 Gy vs. 81.12 Gy with p = 0.001). CONCLUSIONS Use of extremely narrow MLCs could increase dose homogeneity and conformity of the target volume for prostate VMAT.
منابع مشابه
The Dosimetric Effects of Different Multileaf Collimator Widths on Physical Dose Distributions
Introduction: Geometric changes in the multileaf collimator (MLC) led to dosimetric considerations in intensity-modulated radiation therapy (IMRT) due to the number and size of the pixels in the intensity map, which are determined by the MLC leaf width. In this study, we evaluated the dosimetric effects of different MLC widths on physical dose distributions for IMRT plans. Materials and Method...
متن کاملThe effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity
PURPOSE We aim to evaluate the effects of multileaf collimator (MLC) leaf width (5 mm vs. 2.5 mm) on the radiosurgery planning for the treatment of spine lesions according to the modulated techniques (intensity-modulated radiotherapy [IMRT] vs. volumetric-modulated arc therapy [VMAT]) and the complexity of the target shape. METHODS For this study, artificial spinal lesions were contoured and ...
متن کاملLiterature Review on IMRT and VMAT for Prostate Cancer
External beam radiation therapy (EBRT) is considered to be one of the options to treat the prostate cancer. Due to advanced development in EBRT such as volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT), it is possible to deliver conformal dose to the target while minimizing dose to the organs at risk (OAR). The VMAT can deliver modulated radiation beam wit...
متن کاملPhysical and Dosimetric Aspect of Euromechanics Add-on Multileaf Collimator on Varian Clinac 2100 C/D
Background:Â Before treatment planning and dose delivery, quality assurance of multi-leaf collimator (MLC) has an important role in intensity-modulated radiation therapy (IMRT) due to the creation of multiple segments from optimization process.Objective: The purpose of this study is to assess the quality control of MLC leaves using EBT3 Gafchromic films.Material and Methods: Leaf Position accur...
متن کاملInvestigation of Freedom-Degrees impact on Modulation of Radiation
Introduction: Nowadays tendency to apply more degrees of freedom in high-tech radiotherapy systems, and consequent complex process to optimize dose calculation and delivery algorithms, is a challenge of radiation therapy optimization. Faster MLC speed, dose rate, Gantry angle variation, and other degrees, which have been utilized in IMRT, IMAT, VMAT, improved modulation of inte...
متن کامل